

Benha University Faculty of Engineering at Shoubra Electrical Engineering Dept.

Ameeria Integrated Technology Education Cluster

Undergraduate Course

Dr. Mohamed Ahmed Ebrahim

E-mail: mohamed.mohamed@feng.bu.edu.eg

Web site: http://bu.edu.eg/staff/mohamedmohamed033

Lecture (10)

Lighting, Energy and greenhouse

- Artificial lighting uses a lot of energy in our homes and work places.
- In a typically home, lighting will account for about 10% of electricity use.
- In an office, it can be 30%. In a lighting intensive retail environment it could be more than 50%.
- Inefficient lighting also gives off a lot of heat, increasing the energy needed for air conditioning.

Reduce the need for artificial lighting

1. Use Daylight:

- The best way to reduce the energy used for lighting is to use free natural daylight.
- However, too much daylight, specially direct sun, can create glare problems and excessive heat.
- 2. Only use lights when they are required.
- 3. Installation of LED panel indicator lamps in place of filament lamps.
- 4. Installation of energy-efficient fluorescent lamps in place of "conventional" fluorescent lamps.

5. Use the right amount of light and recommended illuminance.

	Lumens / Watt		Color		Typical
Type of Lamp	Range	Avg.	Rendering Index	Typical Application	Life (hours)
Incandescent	8-18	14	Excellent	Homes, restaurants, general lighting, emergency lighting	1000
Fluorescent Lamps	46-60	50	Good w.r.t. coating	Offices, shops, hospitals, homes	5000
Compact fluorescent lamps (CFL)	40-70	60	Very good	Hotels, shops, homes, offices	8000-10000
High pressure mercury (HPMV)	44–57	50	Fair	General lighting in factories, garages, car parking, flood lighting	5000
Halogen lamps	18-24	20	Excellent	Display, flood lighting, stadium exhibition grounds, construction areas	2000-4000
High pressure sodium (HPSV) SON	67–121	90	Fair	General lighting in factories, ware houses, street lighting	6000-12000
Low pressure sodium (LPSV) SOX	101-175	150	Poor	Roadways, tunnels, canals, street lighting	6000-12000

6. Installation of compact fluorescent lamps (cfls) in place of incandescent lamps.

Incandescent Bulb (Watts)	Typical Lumens (Measure of Light Output)		
40	> 450		
60	>800		
75	>1100		
100	>1600		
150	>2600		

7. Replace all exit signs with light emitting diode (led) exit signs.

	Incandescent	Fluorescent	LED
Input Power (watts)	40	11	2
Yearly energy (kWh)	350	96	18
Lamp life (years)	0.25-0.5	1-2	10+
Estimated energy cost/ year (\$0.06/kWh)	\$21.00	\$5.75	\$1.10

Human eye sensitivity and photometric quantities

- The luminous intensity, which is a photometric quantity, represents the light intensity of an optical source, as perceived by the human eye.
- The luminous intensity is measured in units of candela, which is a base unit of the International System of Units.

Other Benefits for reducing the artificial lighting

- 1. Improved Color Rendition/Visibility in Space.
- 2. Longer Lamp Life.
- 3. Less Maintenance (Normally a result of longer lamp life).
- 4. Adjust to target light levels.
- 5. Improved Controls.
- HVAC Savings Typically (1% to 2%) above lighting savings for cooled spaces.
- 7. Incentive from Utility Rebates.